Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx} = y^2 + 2y + 2\]
उत्तर
We have,
\[\frac{dy}{dx} = y^2 + 2y + 2\]
\[ \Rightarrow \frac{dy}{dx} = y^2 + 2y + 1 + 1\]
\[ \Rightarrow \frac{dy}{dx} = \left( y + 1 \right)^2 + 1^2 \]
\[ \Rightarrow \frac{1}{\left( y + 1 \right)^2 + \left( 1 \right)^2}dy = dx\]
Integrating both sides, we get
\[\int\frac{1}{\left( y + 1 \right)^2 + \left( 1 \right)^2}dy = \int dx\]
\[ \Rightarrow \tan^{- 1} \left( \frac{y + 1}{1} \right) + C = x\]
\[ \Rightarrow x = \tan^{- 1} \left( y + 1 \right) + C\]
APPEARS IN
संबंधित प्रश्न
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Find the differential equation of the family of lines passing through the origin.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y2 = a (b2 – x2)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = a e3x + b e– 2x
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.
The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.
The general solution of a differential equation of the type `dx/dy + P_1 x = Q_1` is ______.
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.
Verify that xy = a ex + b e−x + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
Find the differential equation corresponding to y = ae2x + be−3x + cex where a, b, c are arbitrary constants.
\[\frac{dy}{dx} + 4x = e^x\]
(1 + x) y dx + (1 + y) x dy = 0
x cos2 y dx = y cos2 x dy
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
cosec x (log y) dy + x2y dx = 0
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
Solve the differential equation:
cosec3 x dy − cosec y dx = 0
Find the general solution of the following differential equation:
`x (dy)/(dx) = y - xsin(y/x)`
The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is
General solution of tan 5θ = cot 2θ is
The number of arbitrary constant in the general solution of a differential equation of fourth order are
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2) (-2 < y < 2)`
The general solution of the differential equation y dx – x dy = 0 is ______.
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)