Advertisements
Advertisements
प्रश्न
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
उत्तर
(1+y2)dx−(tan−1y−x)dy=0
`=>(1+y^2)dx/dy=tan^−1 y−x`
`⇒(1+y^2)dx/dy+x=tan^−1 y`
`⇒dx/dy+1/(1+y^2)x=tan−1y/(1+y^2)`
∴ Integrating factor (IF)= `e^(int 1/(1+y^2)dy)`
`=e^(tav^-1y)`
APPEARS IN
संबंधित प्रश्न
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y2 = a (b2 – x2)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.
Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)
The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.
Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is
Verify that xy = a ex + b e−x + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
Find the differential equation corresponding to y = ae2x + be−3x + cex where a, b, c are arbitrary constants.
From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.
\[\frac{dy}{dx} = y^2 + 2y + 2\]
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
cosec x (log y) dy + x2y dx = 0
(1 − x2) dy + xy dx = xy2 dx
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is
If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is
The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is
The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is
Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`
What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2) (-2 < y < 2)`