मराठी

D Y D X = Sin 3 X Cos 2 X + X E X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]

बेरीज

उत्तर

We have,

\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x \]

\[ \Rightarrow dy = \left( \sin^3 x \cos^2 x + x e^x \right)dx\]

Integrating both sides, we get

\[\int dy = \int\left( \sin^3 x \cos^2 x + x e^x \right)dx\]

\[ \Rightarrow y = \int \sin^3 x \cos^2 x dx + \int x e^x dx \]

\[ \Rightarrow y = I_1 + I_2 . . . . . \left( 1 \right) \]

Here,

\[ I_1 = \int \sin^3 x \cos^2 x dx\]

\[ I_2 = \int x e^x dx\]

Now,

\[ I_1 = \int \sin^3 x \cos^2 x dx\]

\[ = \int\left( 1 - \cos^2 x \right) \cos^2 x \sin x dx\]

\[\text{Putting }t = \cos x,\text{ we get}\]

\[dt = - \sin x dx\]

\[ \therefore I_1 = - \int t^2 \left( 1 - t^2 \right)dt\]

\[ = \int - t^2 + t^4 dt\]

\[ = - \frac{t^3}{3} + \frac{t^5}{5} + C_1 \]

\[ = \frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + C_1 \]

\[ I_2 = \int x e^x dx\]

\[ = x\int e^x dx - \int\left( \frac{d}{dx}\left( x \right)\int e^x dx \right)dx\]

\[ = x e^x - e^x + C_2 \]

\[ = \left( x - 1 \right) e^x + C_2 \]

\[\text{Putting the value of }I_1\text{ and }I_2\text{ in (1), we get}\]

\[y = \frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + C_1 + \left( x - 1 \right) e^x + C_2 \]
\[y = \frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + \left( x - 1 \right) e^x + C,\text{ where }C = C_1 + C_2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 25 | पृष्ठ १४५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write the integrating factor of the following differential equation:

(1+y2) dx(tan1 yx) dy=0


Find the differential equation of the family of lines passing through the origin.


Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = x^2 e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


tan y dx + tan x dy = 0


(1 + xy dx + (1 + yx dy = 0


x cos2 y dx = y cos2 x dy


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


cosec x (log y) dy + x2y dx = 0


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


General solution of tan 5θ = cot 2θ is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation `(ydx - xdy)/y` = 0


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


The general solution of the differential equation y dx – x dy = 0 is ______.


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×