Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]
उत्तर
We have,
\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x \]
\[ \Rightarrow dy = \left( \sin^3 x \cos^2 x + x e^x \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( \sin^3 x \cos^2 x + x e^x \right)dx\]
\[ \Rightarrow y = \int \sin^3 x \cos^2 x dx + \int x e^x dx \]
\[ \Rightarrow y = I_1 + I_2 . . . . . \left( 1 \right) \]
Here,
\[ I_1 = \int \sin^3 x \cos^2 x dx\]
\[ I_2 = \int x e^x dx\]
Now,
\[ I_1 = \int \sin^3 x \cos^2 x dx\]
\[ = \int\left( 1 - \cos^2 x \right) \cos^2 x \sin x dx\]
\[\text{Putting }t = \cos x,\text{ we get}\]
\[dt = - \sin x dx\]
\[ \therefore I_1 = - \int t^2 \left( 1 - t^2 \right)dt\]
\[ = \int - t^2 + t^4 dt\]
\[ = - \frac{t^3}{3} + \frac{t^5}{5} + C_1 \]
\[ = \frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + C_1 \]
\[ I_2 = \int x e^x dx\]
\[ = x\int e^x dx - \int\left( \frac{d}{dx}\left( x \right)\int e^x dx \right)dx\]
\[ = x e^x - e^x + C_2 \]
\[ = \left( x - 1 \right) e^x + C_2 \]
\[\text{Putting the value of }I_1\text{ and }I_2\text{ in (1), we get}\]
\[y = \frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + C_1 + \left( x - 1 \right) e^x + C_2 \]
\[y = \frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + \left( x - 1 \right) e^x + C,\text{ where }C = C_1 + C_2\]
APPEARS IN
संबंधित प्रश्न
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Find the differential equation of the family of lines passing through the origin.
Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Solve the differential equation `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`
The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]
From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.
\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]
\[\frac{dy}{dx} = x^2 e^x\]
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
tan y dx + tan x dy = 0
(1 + x) y dx + (1 + y) x dy = 0
x cos2 y dx = y cos2 x dy
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
cosec x (log y) dy + x2y dx = 0
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.
The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is
If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is
General solution of tan 5θ = cot 2θ is
Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
The general solution of the differential equation `(ydx - xdy)/y` = 0
The general solution of the differential equation `x^xdy + (ye^x + 2x) dx` = 0
What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2) (-2 < y < 2)`
The general solution of the differential equation y dx – x dy = 0 is ______.
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)