मराठी

Cos Y Log (Sec X + Tan X) Dx = Cos X Log (Sec Y + Tan Y) Dy - Mathematics

Advertisements
Advertisements

प्रश्न

cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy

बेरीज

उत्तर

We have,

cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy

\[\Rightarrow \frac{\log\left( \sec y + \tan y \right)}{\cos y}dy = \frac{\log\left( \sec x + \tan x \right)}{\cos x}dx\]

Integrating both sides, we get

\[\int\frac{\log\left( \sec y + \tan y \right)}{\cos y}dy = \int\frac{\log\left( \sec x + \tan x \right)}{\cos x}dx . . . . . . . . . \left( 1 \right)\]

\[\text{Putting }\log\left( \sec y + \tan y \right) = t\text{ and }\log\left( \sec x + \tan x \right) = u\]

\[ \Rightarrow \frac{\sec^2 y + \sec y \tan y}{\sec y + \tan y}dy = dt and \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x}dx = du\]

\[ \Rightarrow \sec y dy = dt\text{ and }\sec x dx = du\]

Therefore, (1) becomes

\[\int t dt = \int u du\]

\[ \Rightarrow \frac{t^2}{2} = \frac{u^2}{2} + C\]

\[ \Rightarrow \frac{\left[ \log\left( \sec y + \tan y \right) \right]^2}{2} = \frac{\left[ \log\left( \sec x + \tan x \right) \right]^2}{2} + C\]

\[ \Rightarrow \left[ \log\left( \sec y + \tan y \right) \right]^2 = \left[ \log\left( \sec x + \tan x \right) \right]^2 + 2C\]

\[ \Rightarrow \left[ \log\left( \sec y + \tan y \right) \right]^2 = \left[ \log\left( \sec x + \tan x \right) \right]^2 + k,\text{ where }k = 2C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 29 | पृष्ठ १४५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} = y^2 + 2y + 2\]


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


x cos2 y dx = y cos2 x dy


(1 − x2) dy + xy dx = xy2 dx


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


General solution of tan 5θ = cot 2θ is


The number of arbitrary constant in the general solution of a differential equation of fourth order are


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


The general solution of the differential equation y dx – x dy = 0 is ______.


Solve the differential equation: y dx + (x – y2)dy = 0


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×