Advertisements
Advertisements
प्रश्न
Solve the differential equation: y dx + (x – y2)dy = 0
उत्तर
y dx + (x – y2)dy = 0
Reducing the given differential equation to the form `(dx)/(dy)` + Px = Q we get, `(dx)/(dy) + x/y` = y
I.F = `e^(intPdy)`
= `e^(int 1/y dy)`
= elog y
= y
The general solution is given by
x · IF = `int "Q" * "IF" "dy"`
⇒ xy = `int "y"^2 "dy"`
⇒ xy = `"y"^3/3 + C`, which is the required general solution
APPEARS IN
संबंधित प्रश्न
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Find the differential equation of the family of lines passing through the origin.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
`x/a + y/b = 1`
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y2 = a (b2 – x2)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = a e3x + b e– 2x
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.
Solve the differential equation `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.
\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]
\[\frac{dy}{dx} = y^2 + 2y + 2\]
\[\frac{dy}{dx} + 4x = e^x\]
x cos2 y dx = y cos2 x dy
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
cosec x (log y) dy + x2y dx = 0
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
The number of arbitrary constant in the general solution of a differential equation of fourth order are
The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is
The general solution of the differential equation `x^xdy + (ye^x + 2x) dx` = 0
Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)