मराठी

Find the Differential Equation of All the Circles Which Pass Through the Origin and Whose Centres Lie on Y-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.

बेरीज

उत्तर

The equation of the family of circles that pass through the origin (0, 0) and whose centres lie on the y-axis is given by

\[x^2 + \left( y - a \right)^2 = a^2................(1)\]

where a  is any arbitrary constant.

As this equation has only one arbitrary constant, we shall get a first order differential equation.

Differentiating equation (1) with respect to x, we get

\[2x + 2\left( y - a \right)\frac{dy}{dx} = 0\]

\[ \Rightarrow x + \left( y - a \right)\frac{dy}{dx} = 0\]

\[ \Rightarrow x = \left( a - y \right)\frac{dy}{dx}\]

\[ \Rightarrow \frac{x}{\frac{dy}{dx}} = a - y\]

\[ \Rightarrow a = y + \frac{x}{\frac{dy}{dx}} ................(2)\]

Substituting the value of a in equation (2), we get

\[x^2 + \left( y - y - \frac{x}{\frac{dy}{dx}} \right)^2 = \left( y + \frac{x}{\frac{dy}{dx}} \right)^2 \]

\[ \Rightarrow x^2 + \frac{x^2}{\left( \frac{dy}{dx} \right)^2} = y^2 + 2\frac{xy}{\frac{dy}{dx}} + \frac{x^2}{\left( \frac{dy}{dx} \right)^2}\]

\[ \Rightarrow x^2 = y^2 + 2\frac{xy}{\frac{dy}{dx}}\]

\[ \Rightarrow \left( x^2 - y^2 \right)\frac{dy}{dx} = 2xy\]

It is the required differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.02 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.02 | Q 9 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} = y^2 + 2y + 2\]


\[\frac{dy}{dx} = x^2 e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]


tan y dx + tan x dy = 0


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


(1 − x2) dy + xy dx = xy2 dx


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


Solve the differential equation:

cosec3 x dy − cosec y dx = 0


The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×