हिंदी

Find the Differential Equation of All the Circles Which Pass Through the Origin and Whose Centres Lie on Y-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.

योग

उत्तर

The equation of the family of circles that pass through the origin (0, 0) and whose centres lie on the y-axis is given by

\[x^2 + \left( y - a \right)^2 = a^2................(1)\]

where a  is any arbitrary constant.

As this equation has only one arbitrary constant, we shall get a first order differential equation.

Differentiating equation (1) with respect to x, we get

\[2x + 2\left( y - a \right)\frac{dy}{dx} = 0\]

\[ \Rightarrow x + \left( y - a \right)\frac{dy}{dx} = 0\]

\[ \Rightarrow x = \left( a - y \right)\frac{dy}{dx}\]

\[ \Rightarrow \frac{x}{\frac{dy}{dx}} = a - y\]

\[ \Rightarrow a = y + \frac{x}{\frac{dy}{dx}} ................(2)\]

Substituting the value of a in equation (2), we get

\[x^2 + \left( y - y - \frac{x}{\frac{dy}{dx}} \right)^2 = \left( y + \frac{x}{\frac{dy}{dx}} \right)^2 \]

\[ \Rightarrow x^2 + \frac{x^2}{\left( \frac{dy}{dx} \right)^2} = y^2 + 2\frac{xy}{\frac{dy}{dx}} + \frac{x^2}{\left( \frac{dy}{dx} \right)^2}\]

\[ \Rightarrow x^2 = y^2 + 2\frac{xy}{\frac{dy}{dx}}\]

\[ \Rightarrow \left( x^2 - y^2 \right)\frac{dy}{dx} = 2xy\]

It is the required differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.02 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.02 | Q 9 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the differential equation of the family of lines passing through the origin.


Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.


Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} = x^2 e^x\]


\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]


tan y dx + tan x dy = 0


(1 + xy dx + (1 + yx dy = 0


x cos2 y dx = y cos2 x dy


cosec x (log y) dy + x2y dx = 0


(1 − x2) dy + xy dx = xy2 dx


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation `(ydx - xdy)/y` = 0


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


The general solution of the differential equation y dx – x dy = 0 is ______.


Solve the differential equation: y dx + (x – y2)dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×