हिंदी

Show that Y = C X + 2c2 is a Solution of the Differential Equation 2 ( D Y D X ) 2 + X D Y D X − Y = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]

योग

उत्तर

We have,

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0 . . . . . \left( 1 \right)\]

Now,

y = C x + 2C2

\[\Rightarrow\frac{dy}{dx}=C\]

\[\text{Putting }\frac{dy}{dx} = C\text{ and }y = Cx + 2 C^2\text{ in (1), we get}\]

\[\text{LHS }= 2 \left( C \right)^2 + x\left( C \right) - \left( Cx + 2 C^2 \right)\]

\[ = 2 C^2 + xC - xC - 2 C^2 \]

\[ = 0 =\text{ RHS}\]

Thus, y = C x + 2C2 is the solution of the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 12 | पृष्ठ १४५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the integrating factor of the following differential equation:

(1+y2) dx(tan1 yx) dy=0


Find the differential equation of the family of lines passing through the origin.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.


Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


(1 + xy dx + (1 + yx dy = 0


x cos2 y dx = y cos2 x dy


cosec x (log y) dy + x2y dx = 0


(1 − x2) dy + xy dx = xy2 dx


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


Solve the differential equation:

cosec3 x dy − cosec y dx = 0


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


General solution of tan 5θ = cot 2θ is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


The general solution of the differential equation y dx – x dy = 0 is ______.


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×