Advertisements
Advertisements
प्रश्न
Find the differential equation of the family of lines passing through the origin.
उत्तर
Consider the equation, y = mx, where m is the parameter.
Thus, the above equation represents the family of lines which pass through the origin.
`y=mx....(1)`
`y/x=m....(2)`
Differentiating the above equation (1) with respect to x,
`y = mx`
`dy/dx=m xx1`
`=>dy/dx=m`
`=>dy/dx=y/x` [because from equation 2]
`=>dy/dx-y/x=0`
Thus we have eliminated the constant, m.
The required differential equation is
`dy/dx-y/x=0`
APPEARS IN
संबंधित प्रश्न
Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
Verify that xy = a ex + b e−x + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
Find the differential equation corresponding to y = ae2x + be−3x + cex where a, b, c are arbitrary constants.
From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.
\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]
\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]
\[\frac{dy}{dx} = y^2 + 2y + 2\]
\[\frac{dy}{dx} + 4x = e^x\]
\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]
\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]
(1 + x) y dx + (1 + y) x dy = 0
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
cosec x (log y) dy + x2y dx = 0
Solve the differential equation:
cosec3 x dy − cosec y dx = 0
Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is
The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is
The general solution of the differential equation `x^xdy + (ye^x + 2x) dx` = 0
Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`
The general solution of the differential equation y dx – x dy = 0 is ______.