हिंदी

Find the Differential Equation of the Family of Lines Passing Through the Origin. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the differential equation of the family of lines passing through the origin.

उत्तर

Consider the equation, y = mx, where m is the parameter.
Thus, the above equation represents the family of lines which pass through the origin.

`y=mx....(1)`

`y/x=m....(2)`


Differentiating the above equation (1) with respect to x,

`y = mx`

`dy/dx=m xx1`

`=>dy/dx=m`

`=>dy/dx=y/x` [because from equation 2]

`=>dy/dx-y/x=0`

Thus we have eliminated the constant, m.
The required differential equation is

`dy/dx-y/x=0`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Panchkula Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} = y^2 + 2y + 2\]


\[\frac{dy}{dx} + 4x = e^x\]


\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


(1 + xy dx + (1 + yx dy = 0


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


cosec x (log y) dy + x2y dx = 0


Solve the differential equation:

cosec3 x dy − cosec y dx = 0


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


The general solution of the differential equation y dx – x dy = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×