Advertisements
Advertisements
Question
Find the differential equation of the family of lines passing through the origin.
Solution
Consider the equation, y = mx, where m is the parameter.
Thus, the above equation represents the family of lines which pass through the origin.
`y=mx....(1)`
`y/x=m....(2)`
Differentiating the above equation (1) with respect to x,
`y = mx`
`dy/dx=m xx1`
`=>dy/dx=m`
`=>dy/dx=y/x` [because from equation 2]
`=>dy/dx-y/x=0`
Thus we have eliminated the constant, m.
The required differential equation is
`dy/dx-y/x=0`
APPEARS IN
RELATED QUESTIONS
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
`x/a + y/b = 1`
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y2 = a (b2 – x2)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = a e3x + b e– 2x
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Solve the differential equation `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.
Verify that xy = a ex + b e−x + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Find the differential equation corresponding to y = ae2x + be−3x + cex where a, b, c are arbitrary constants.
Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]
\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]
\[\frac{dy}{dx} = y^2 + 2y + 2\]
\[\frac{dy}{dx} + 4x = e^x\]
\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]
tan y dx + tan x dy = 0
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`
What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2) (-2 < y < 2)`
The general solution of the differential equation y dx – x dy = 0 is ______.
Solve the differential equation: y dx + (x – y2)dy = 0
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)