English

Find the Differential Equation of the Family of Lines Passing Through the Origin. - Mathematics

Advertisements
Advertisements

Question

Find the differential equation of the family of lines passing through the origin.

Solution

Consider the equation, y = mx, where m is the parameter.
Thus, the above equation represents the family of lines which pass through the origin.

`y=mx....(1)`

`y/x=m....(2)`


Differentiating the above equation (1) with respect to x,

`y = mx`

`dy/dx=m xx1`

`=>dy/dx=m`

`=>dy/dx=y/x` [because from equation 2]

`=>dy/dx-y/x=0`

Thus we have eliminated the constant, m.
The required differential equation is

`dy/dx-y/x=0`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Panchkula Set 1

RELATED QUESTIONS

Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.


Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = y^2 + 2y + 2\]


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


tan y dx + tan x dy = 0


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


The general solution of the differential equation y dx – x dy = 0 is ______.


Solve the differential equation: y dx + (x – y2)dy = 0


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×