English

Find the Differential Equation Representing the Family of Curves `Y = Ae^(Bx + 5)`. Where A And B Are Arbitrary Constants. - Mathematics

Advertisements
Advertisements

Question

Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.

Solution

Given : `y = ae^(bx + 5)`

Differentiating y with respect to x. 

`(dy)/(dx) = ae^(bx + 5) (b) = be^(bx + 5) = by`    (Since `y= ae^(bx + 5)`)  .....1

Differentiating (1) again with respect to x we get

`(d^2y)/(dx^2) = b (dy)/(dx)`   .....(2)

Dividing (2) by (1) we get

`((d^2y)/(dx^2))/(dy/dx)  = (b(dy/dx))/(by)`

`=> y (d^2y)/(dx^2) = ((dy)/(dx))^2`

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March) Delhi Set 1

RELATED QUESTIONS

Find the differential equation of the family of lines passing through the origin.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]


Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.


Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} = x^2 e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


tan y dx + tan x dy = 0


(1 + xy dx + (1 + yx dy = 0


x cos2 y dx = y cos2 x dy


(1 − x2) dy + xy dx = xy2 dx


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is


The number of arbitrary constant in the general solution of a differential equation of fourth order are


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


Solve the differential equation: y dx + (x – y2)dy = 0


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×