हिंदी

Find the Differential Equation Representing the Family of Curves `Y = Ae^(Bx + 5)`. Where A And B Are Arbitrary Constants. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.

उत्तर

Given : `y = ae^(bx + 5)`

Differentiating y with respect to x. 

`(dy)/(dx) = ae^(bx + 5) (b) = be^(bx + 5) = by`    (Since `y= ae^(bx + 5)`)  .....1

Differentiating (1) again with respect to x we get

`(d^2y)/(dx^2) = b (dy)/(dx)`   .....(2)

Dividing (2) by (1) we get

`((d^2y)/(dx^2))/(dy/dx)  = (b(dy/dx))/(by)`

`=> y (d^2y)/(dx^2) = ((dy)/(dx))^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = x^2 e^x\]


tan y dx + tan x dy = 0


(1 + xy dx + (1 + yx dy = 0


(1 − x2) dy + xy dx = xy2 dx


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


Solve the differential equation:

cosec3 x dy − cosec y dx = 0


General solution of tan 5θ = cot 2θ is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


The general solution of the differential equation y dx – x dy = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×