Advertisements
Advertisements
प्रश्न
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
उत्तर
Given : `y = ae^(bx + 5)`
Differentiating y with respect to x.
`(dy)/(dx) = ae^(bx + 5) (b) = be^(bx + 5) = by` (Since `y= ae^(bx + 5)`) .....1
Differentiating (1) again with respect to x we get
`(d^2y)/(dx^2) = b (dy)/(dx)` .....(2)
Dividing (2) by (1) we get
`((d^2y)/(dx^2))/(dy/dx) = (b(dy/dx))/(by)`
`=> y (d^2y)/(dx^2) = ((dy)/(dx))^2`
APPEARS IN
संबंधित प्रश्न
Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
`x/a + y/b = 1`
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y2 = a (b2 – x2)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.
Verify that xy = a ex + b e−x + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Find the differential equation corresponding to y = ae2x + be−3x + cex where a, b, c are arbitrary constants.
\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]
\[\frac{dy}{dx} = x^2 e^x\]
tan y dx + tan x dy = 0
(1 + x) y dx + (1 + y) x dy = 0
(1 − x2) dy + xy dx = xy2 dx
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
Solve the differential equation:
cosec3 x dy − cosec y dx = 0
General solution of tan 5θ = cot 2θ is
Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`
What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2) (-2 < y < 2)`
The general solution of the differential equation y dx – x dy = 0 is ______.