हिंदी

(1 + X) Y Dx + (1 + Y) X Dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

(1 + xy dx + (1 + yx dy = 0

योग

उत्तर

We have,

(1 + xy dx + (1 + yx dy = 0

\[\frac{dy}{dx} = - \frac{y\left( 1 + x \right)}{x\left( 1 + y \right)}\]

\[ \Rightarrow \left( \frac{1 + y}{y} \right)dy = - \left( \frac{1 + x}{x} \right)dx\]

\[ \Rightarrow \left( \frac{1}{y} + y \right)dy = - \left( \frac{1}{x} + 1 \right)dx\]

Integrating both sides, we get

\[\int\left( \frac{1}{y} + 1 \right)dy = - \int\left( \frac{1}{x} + 1 \right)dx\]

\[ \Rightarrow \int\frac{1}{y}dy + \int dy = - \int\frac{1}{x}dx - \int dx\]

\[ \Rightarrow \log\left| y \right| + y = - \log\left| x \right| - x + C\]

\[ \Rightarrow \log\left| xy \right| + y + x = C\]

\[ \Rightarrow x + y + \log\left| xy \right| = C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 27 | पृष्ठ १४५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the differential equation of the family of lines passing through the origin.


Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = y^2 + 2y + 2\]


\[\frac{dy}{dx} = x^2 e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


x cos2 y dx = y cos2 x dy


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


(1 − x2) dy + xy dx = xy2 dx


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


General solution of tan 5θ = cot 2θ is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


The number of arbitrary constant in the general solution of a differential equation of fourth order are


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `(ydx - xdy)/y` = 0


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


Solve the differential equation: y dx + (x – y2)dy = 0


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×