हिंदी

Form a Differential Equation Representing the Given Family of Curves by Eliminating Arbitrary Constants a and B. Y = a E3x + B E– 2x - Mathematics

Advertisements
Advertisements

प्रश्न

Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x

उत्तर

This is the required differential equation of the given curve.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.3 [पृष्ठ ३९१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.3 | Q 3 | पृष्ठ ३९१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


\[\frac{dy}{dx} = y^2 + 2y + 2\]


\[\frac{dy}{dx} = x^2 e^x\]


\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


tan y dx + tan x dy = 0


x cos2 y dx = y cos2 x dy


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


cosec x (log y) dy + x2y dx = 0


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


The number of arbitrary constant in the general solution of a differential equation of fourth order are


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `(ydx - xdy)/y` = 0


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


Solve the differential equation: y dx + (x – y2)dy = 0


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×