हिंदी

The general solution of the differential equation ydx-xdyy=0 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.

विकल्प

  • xy = C

  • x = Cy2

  • y = Cx

  • y = Cx2

MCQ
रिक्त स्थान भरें

उत्तर

The general solution of the differential equation `(y dx - x dy)/y = 0` is y = Cx.

Explanation:

Given the differential equation

`(y dx - x dy)/y = 0`

or `dx - y/x dy = 0`

and  `dx/x - dy/y = 0`

On integrating,

⇒ log |x| - log |y| = log |C'|

⇒ `log |x/y| = log |C'|`

⇒ `x/y = C'`

⇒ `y = 1/C' x`

⇒ y = Cx

Where `1/C = C`

Which is the required solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.7 [पृष्ठ ४२१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.7 | Q 16 | पृष्ठ ४२१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the integrating factor of the following differential equation:

(1+y2) dx(tan1 yx) dy=0


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} = x^2 e^x\]


\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


tan y dx + tan x dy = 0


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


General solution of tan 5θ = cot 2θ is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation `(ydx - xdy)/y` = 0


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×