हिंदी

D Y D X = 1 X 2 + 4 X + 5 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]

योग

उत्तर

We have,

\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x^2 + 4x + 4 + 1}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\left( x + 2 \right)^2 + \left( 1 \right)^2}\]
\[ \Rightarrow dy = \frac{1}{\left( x + 2 \right)^2 + \left( 1 \right)^2}dx\]

Integrating both sides, we get

\[\int y = \int\frac{1}{\left( x + 2 \right)^2 + \left( 1 \right)^2}dx\]

\[ \Rightarrow y = \tan^{- 1} \frac{x + 2}{1} + C\]

\[ \Rightarrow y = \tan^{- 1} \left( x + 2 \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 19 | पृष्ठ १४५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the integrating factor of the following differential equation:

(1+y2) dx(tan1 yx) dy=0


Find the differential equation of the family of lines passing through the origin.


Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = y^2 + 2y + 2\]


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


(1 + xy dx + (1 + yx dy = 0


Solve the differential equation:

cosec3 x dy − cosec y dx = 0


General solution of tan 5θ = cot 2θ is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation `(ydx - xdy)/y` = 0


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


The general solution of the differential equation y dx – x dy = 0 is ______.


Solve the differential equation: y dx + (x – y2)dy = 0


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×