Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]
उत्तर
We have,
\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x^2 + 4x + 4 + 1}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\left( x + 2 \right)^2 + \left( 1 \right)^2}\]
\[ \Rightarrow dy = \frac{1}{\left( x + 2 \right)^2 + \left( 1 \right)^2}dx\]
Integrating both sides, we get
\[\int y = \int\frac{1}{\left( x + 2 \right)^2 + \left( 1 \right)^2}dx\]
\[ \Rightarrow y = \tan^{- 1} \frac{x + 2}{1} + C\]
\[ \Rightarrow y = \tan^{- 1} \left( x + 2 \right) + C\]
APPEARS IN
संबंधित प्रश्न
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y2 = a (b2 – x2)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = a e3x + b e– 2x
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.
Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)
The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.
Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.
The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is
Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]
From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.
\[\frac{dy}{dx} + 4x = e^x\]
\[\frac{dy}{dx} = x^2 e^x\]
\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]
\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]
Solve the differential equation:
cosec3 x dy − cosec y dx = 0
Find the general solution of the following differential equation:
`x (dy)/(dx) = y - xsin(y/x)`
If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is
Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is
The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is
The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is
Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`
What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2) (-2 < y < 2)`
Solve the differential equation: y dx + (x – y2)dy = 0
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)