मराठी

( Tan 2 X + 2 Tan X + 5 ) D Y D X = 2 ( 1 + Tan X ) Sec 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]

बेरीज

उत्तर

We have,

\[\left( \tan^2 x + 2 \tan x + 5 \right)\frac{dy}{dx} = 2\left( 1 + \tan x \right) \sec^2 x\]

\[ \Rightarrow dy = \frac{2\left( 1 + \tan x \right) \sec^2 x}{\left( \tan^2 x + 2 \tan x + 5 \right)} dx\]

Integrating both sides, we get

\[\int dy = \int\frac{2\left( 1 + \tan x \right) \sec^2 x}{\left( \tan^2 x + 2 \tan x + 5 \right)} dx . . . . . . . . \left( 1 \right)\]
\[\text{Putting }\tan^2 x + 2 \tan x + 5 = t\]

\[ \therefore \left( 2 \tan x se c^2 x + 2se c^2 x \right) dx = dt\]

\[ \Rightarrow 2\left( 1 + \tan x \right) \sec^2 x dx = dt\]

Therefore (1) becomes,

\[\int dy = \int\frac{1}{t} dt\]

\[ \Rightarrow y = \log \left| t \right| + C\]

\[ \Rightarrow y = \log \left| \tan^2 x + 2 \tan x + 5 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 24 | पृष्ठ १४५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the differential equation of the family of lines passing through the origin.


Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} = x^2 e^x\]


x cos2 y dx = y cos2 x dy


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


(1 − x2) dy + xy dx = xy2 dx


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


General solution of tan 5θ = cot 2θ is


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×