English

( Tan 2 X + 2 Tan X + 5 ) D Y D X = 2 ( 1 + Tan X ) Sec 2 X - Mathematics

Advertisements
Advertisements

Question

\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]

Sum

Solution

We have,

\[\left( \tan^2 x + 2 \tan x + 5 \right)\frac{dy}{dx} = 2\left( 1 + \tan x \right) \sec^2 x\]

\[ \Rightarrow dy = \frac{2\left( 1 + \tan x \right) \sec^2 x}{\left( \tan^2 x + 2 \tan x + 5 \right)} dx\]

Integrating both sides, we get

\[\int dy = \int\frac{2\left( 1 + \tan x \right) \sec^2 x}{\left( \tan^2 x + 2 \tan x + 5 \right)} dx . . . . . . . . \left( 1 \right)\]
\[\text{Putting }\tan^2 x + 2 \tan x + 5 = t\]

\[ \therefore \left( 2 \tan x se c^2 x + 2se c^2 x \right) dx = dt\]

\[ \Rightarrow 2\left( 1 + \tan x \right) \sec^2 x dx = dt\]

Therefore (1) becomes,

\[\int dy = \int\frac{1}{t} dt\]

\[ \Rightarrow y = \log \left| t \right| + C\]

\[ \Rightarrow y = \log \left| \tan^2 x + 2 \tan x + 5 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 145]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 24 | Page 145

RELATED QUESTIONS

Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]


Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} = x^2 e^x\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


(1 + xy dx + (1 + yx dy = 0


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


(1 − x2) dy + xy dx = xy2 dx


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


General solution of tan 5θ = cot 2θ is


The number of arbitrary constant in the general solution of a differential equation of fourth order are


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


The general solution of the differential equation y dx – x dy = 0 is ______.


Solve the differential equation: y dx + (x – y2)dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×