Advertisements
Advertisements
Question
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
Solution
We have,
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x \log x} + x \sin^2 x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x \log x} + \frac{x}{2}\left( 1 - \cos 2x \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x \log x} + \frac{x}{2} - \frac{x}{2}\cos 2x\]
Integrating both sides, we get
\[\int dy = \int\left( \frac{1}{x \log x} + \frac{x}{2} - \frac{x}{2}\cos 2x \right) dx\]
\[ \Rightarrow \int dy = \int\frac{1}{x \log x}dx + \frac{1}{2}\int x dx - \frac{1}{2}\int\left( x \cos 2x \right)dx\]
\[ \Rightarrow y = \log \left| \log x \right| + \frac{x^2}{4} - \frac{x}{2}\int\left( \cos 2x \right)dx + \frac{1}{2}\int\left[ \frac{d}{dx}\left( x \right)\int\left( \cos 2x \right) dx \right]dx\]
\[ \Rightarrow y = \log \left| \log x \right| + \frac{x^2}{4} - \frac{x \sin 2x}{4} - \frac{\cos 2x}{8} + C\]
APPEARS IN
RELATED QUESTIONS
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y2 = a (b2 – x2)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = a e3x + b e– 2x
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.
The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
Verify that xy = a ex + b e−x + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]
\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]
\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]
\[\frac{dy}{dx} + 4x = e^x\]
\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]
(1 + x) y dx + (1 + y) x dy = 0
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
cosec x (log y) dy + x2y dx = 0
(1 − x2) dy + xy dx = xy2 dx
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is
Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is
The number of arbitrary constant in the general solution of a differential equation of fourth order are
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is
The general solution of the differential equation `(ydx - xdy)/y` = 0
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)