English

D Y D X − X Sin 2 X = 1 X Log X - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

Sum

Solution

We have,

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x \log x} + x \sin^2 x\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x \log x} + \frac{x}{2}\left( 1 - \cos 2x \right)\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x \log x} + \frac{x}{2} - \frac{x}{2}\cos 2x\]

Integrating both sides, we get

\[\int dy = \int\left( \frac{1}{x \log x} + \frac{x}{2} - \frac{x}{2}\cos 2x \right) dx\]

\[ \Rightarrow \int dy = \int\frac{1}{x \log x}dx + \frac{1}{2}\int x dx - \frac{1}{2}\int\left( x \cos 2x \right)dx\]

\[ \Rightarrow y = \log \left| \log x \right| + \frac{x^2}{4} - \frac{x}{2}\int\left( \cos 2x \right)dx + \frac{1}{2}\int\left[ \frac{d}{dx}\left( x \right)\int\left( \cos 2x \right) dx \right]dx\]

\[ \Rightarrow y = \log \left| \log x \right| + \frac{x^2}{4} - \frac{x \sin 2x}{4} - \frac{\cos 2x}{8} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 145]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 23 | Page 145

RELATED QUESTIONS

Write the integrating factor of the following differential equation:

(1+y2) dx(tan1 yx) dy=0


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} + 4x = e^x\]


\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]


(1 + xy dx + (1 + yx dy = 0


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


cosec x (log y) dy + x2y dx = 0


(1 − x2) dy + xy dx = xy2 dx


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


The number of arbitrary constant in the general solution of a differential equation of fourth order are


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `(ydx - xdy)/y` = 0


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×