Advertisements
Advertisements
Question
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
Solution
We have,
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
\[\Rightarrow \frac{\log\left( \sec y + \tan y \right)}{\cos y}dy = \frac{\log\left( \sec x + \tan x \right)}{\cos x}dx\]
Integrating both sides, we get
\[\int\frac{\log\left( \sec y + \tan y \right)}{\cos y}dy = \int\frac{\log\left( \sec x + \tan x \right)}{\cos x}dx . . . . . . . . . \left( 1 \right)\]
\[\text{Putting }\log\left( \sec y + \tan y \right) = t\text{ and }\log\left( \sec x + \tan x \right) = u\]
\[ \Rightarrow \frac{\sec^2 y + \sec y \tan y}{\sec y + \tan y}dy = dt and \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x}dx = du\]
\[ \Rightarrow \sec y dy = dt\text{ and }\sec x dx = du\]
Therefore, (1) becomes
\[\int t dt = \int u du\]
\[ \Rightarrow \frac{t^2}{2} = \frac{u^2}{2} + C\]
\[ \Rightarrow \frac{\left[ \log\left( \sec y + \tan y \right) \right]^2}{2} = \frac{\left[ \log\left( \sec x + \tan x \right) \right]^2}{2} + C\]
\[ \Rightarrow \left[ \log\left( \sec y + \tan y \right) \right]^2 = \left[ \log\left( \sec x + \tan x \right) \right]^2 + 2C\]
\[ \Rightarrow \left[ \log\left( \sec y + \tan y \right) \right]^2 = \left[ \log\left( \sec x + \tan x \right) \right]^2 + k,\text{ where }k = 2C\]
APPEARS IN
RELATED QUESTIONS
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y2 = a (b2 – x2)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.
Solve the differential equation `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`
The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.
Verify that xy = a ex + b e−x + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]
Find the differential equation corresponding to y = ae2x + be−3x + cex where a, b, c are arbitrary constants.
Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]
\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]
\[\frac{dy}{dx} = x^2 e^x\]
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
(1 + x) y dx + (1 + y) x dy = 0
x cos2 y dx = y cos2 x dy
cosec x (log y) dy + x2y dx = 0
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.
If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is
General solution of tan 5θ = cot 2θ is
Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is
The number of arbitrary constant in the general solution of a differential equation of fourth order are
The general solution of the differential equation `x^xdy + (ye^x + 2x) dx` = 0
What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2) (-2 < y < 2)`
Solve the differential equation: y dx + (x – y2)dy = 0
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)