हिंदी

Cos Y Log (Sec X + Tan X) Dx = Cos X Log (Sec Y + Tan Y) Dy - Mathematics

Advertisements
Advertisements

प्रश्न

cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy

योग

उत्तर

We have,

cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy

\[\Rightarrow \frac{\log\left( \sec y + \tan y \right)}{\cos y}dy = \frac{\log\left( \sec x + \tan x \right)}{\cos x}dx\]

Integrating both sides, we get

\[\int\frac{\log\left( \sec y + \tan y \right)}{\cos y}dy = \int\frac{\log\left( \sec x + \tan x \right)}{\cos x}dx . . . . . . . . . \left( 1 \right)\]

\[\text{Putting }\log\left( \sec y + \tan y \right) = t\text{ and }\log\left( \sec x + \tan x \right) = u\]

\[ \Rightarrow \frac{\sec^2 y + \sec y \tan y}{\sec y + \tan y}dy = dt and \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x}dx = du\]

\[ \Rightarrow \sec y dy = dt\text{ and }\sec x dx = du\]

Therefore, (1) becomes

\[\int t dt = \int u du\]

\[ \Rightarrow \frac{t^2}{2} = \frac{u^2}{2} + C\]

\[ \Rightarrow \frac{\left[ \log\left( \sec y + \tan y \right) \right]^2}{2} = \frac{\left[ \log\left( \sec x + \tan x \right) \right]^2}{2} + C\]

\[ \Rightarrow \left[ \log\left( \sec y + \tan y \right) \right]^2 = \left[ \log\left( \sec x + \tan x \right) \right]^2 + 2C\]

\[ \Rightarrow \left[ \log\left( \sec y + \tan y \right) \right]^2 = \left[ \log\left( \sec x + \tan x \right) \right]^2 + k,\text{ where }k = 2C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 29 | पृष्ठ १४५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the differential equation of the family of lines passing through the origin.


Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = x^2 e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


x cos2 y dx = y cos2 x dy


cosec x (log y) dy + x2y dx = 0


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


Solve the differential equation:

cosec3 x dy − cosec y dx = 0


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


General solution of tan 5θ = cot 2θ is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


The number of arbitrary constant in the general solution of a differential equation of fourth order are


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×