हिंदी

X Cos2 Y Dx = Y Cos2 X Dy - Mathematics

Advertisements
Advertisements

प्रश्न

x cos2 y dx = y cos2 x dy

योग

उत्तर

We have,

x cos2 y dx = y cos2 x dy

\[\Rightarrow y \sec^2 y dy = x \sec^2 x dx\]

Integrating both sides, we get

\[\Rightarrow y\int \sec^2 ydy - \int\left( \frac{dy}{dy} \times \int \sec^2 y dy \right)dy = x\int \sec^2 x dx - \int\left( \frac{dx}{dx} \times \int \sec^2 x dx \right)dx\]

\[ \Rightarrow y \tan y - \int\tan y dy = x \tan x - \int\tan x dx - C\]

\[ \Rightarrow y \tan y - \log \left| \sec y \right| = x \tan x - \log \left| \sec x \right| - C\]

\[ \Rightarrow x \tan x - y \tan y = \log\left| \sec x \right| - \log\left| \sec y \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 28 | पृष्ठ १४५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the integrating factor of the following differential equation:

(1+y2) dx(tan1 yx) dy=0


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} + 4x = e^x\]


(1 + xy dx + (1 + yx dy = 0


(1 − x2) dy + xy dx = xy2 dx


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


Solve the differential equation:

cosec3 x dy − cosec y dx = 0


The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


General solution of tan 5θ = cot 2θ is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×