हिंदी

Form the Differential Equation Having Y = ( Sin − 1 X ) 2 + a Cos − 1 X + B , Where a and B Are Arbitrary Constants, as Its General Solution. - Mathematics

Advertisements
Advertisements

प्रश्न

Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.

उत्तर

We have two constnts in the solution, so we will differentiate both sides twice and eliminate the constants A and B.
\[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2 \sin^{- 1} x}{\sqrt{1 - x^2}} - \frac{A}{\sqrt{1 - x^2}}\]
\[ \Rightarrow \left( \sqrt{1 - x^2} \right)\frac{dy}{dx} = 2 \sin^{- 1} x - A\]
\[\Rightarrow \left( \sqrt{1 - x^2} \right)\frac{d^2 y}{d x^2} + \frac{\left( - 2x \right)}{2\sqrt{1 - x^2}}\frac{dy}{dx} = \frac{2}{\sqrt{1 - x^2}}\]
\[ \Rightarrow \left( \sqrt{1 - x^2} \right)\frac{d^2 y}{d x^2} - \frac{x}{\sqrt{1 - x^2}}\frac{dy}{dx} = \frac{2}{\sqrt{1 - x^2}}\]
\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} = 2\]
\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - 2 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.02 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.02 | Q 14 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the differential equation of the family of lines passing through the origin.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = y^2 + 2y + 2\]


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} = x^2 e^x\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


tan y dx + tan x dy = 0


(1 + xy dx + (1 + yx dy = 0


cosec x (log y) dy + x2y dx = 0


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


Solve the differential equation:

cosec3 x dy − cosec y dx = 0


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


The number of arbitrary constant in the general solution of a differential equation of fourth order are


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


Solve the differential equation: y dx + (x – y2)dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×