हिंदी

Form a Differential Equation Representing the Given Family of Curves by Eliminating Arbitrary Constants a and B. Y = E2x (A + Bx) - Mathematics

Advertisements
Advertisements

प्रश्न

Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)

उत्तर

y = e2x (a + bx) ...(1)

Differentiating both sides with respect to x, we get:

This is the required differential equation of the given curve.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.3 [पृष्ठ ३९१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.3 | Q 4 | पृष्ठ ३९१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]


Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} = x^2 e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


tan y dx + tan x dy = 0


x cos2 y dx = y cos2 x dy


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


cosec x (log y) dy + x2y dx = 0


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


General solution of tan 5θ = cot 2θ is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


The general solution of the differential equation y dx – x dy = 0 is ______.


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×