Advertisements
Advertisements
Question
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Solution
We have,
\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0 . . . . . \left( 1 \right)\]
Now,
y = C x + 2C2
\[\Rightarrow\frac{dy}{dx}=C\]
\[\text{Putting }\frac{dy}{dx} = C\text{ and }y = Cx + 2 C^2\text{ in (1), we get}\]
\[\text{LHS }= 2 \left( C \right)^2 + x\left( C \right) - \left( Cx + 2 C^2 \right)\]
\[ = 2 C^2 + xC - xC - 2 C^2 \]
\[ = 0 =\text{ RHS}\]
Thus, y = C x + 2C2 is the solution of the given differential equation.
APPEARS IN
RELATED QUESTIONS
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
`x/a + y/b = 1`
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = a e3x + b e– 2x
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)
The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.
The general solution of a differential equation of the type `dx/dy + P_1 x = Q_1` is ______.
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.
The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is
Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]
Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]
From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.
\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]
\[\frac{dy}{dx} = y^2 + 2y + 2\]
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
tan y dx + tan x dy = 0
x cos2 y dx = y cos2 x dy
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
General solution of tan 5θ = cot 2θ is
The number of arbitrary constant in the general solution of a differential equation of fourth order are
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is
The general solution of the differential equation `(ydx - xdy)/y` = 0
Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`
The general solution of the differential equation y dx – x dy = 0 is ______.