Advertisements
Advertisements
Question
Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.
Solution
The equation of the family of curves is v=A/r+B, where A and B are arbitrary constants.
We have
v=Ar+B
Differentiating both sides with respect to r, we get
`(dv)/(dr)=-A/r^2+0`
`⇒r^2(dv)/(dr)=−A`
Again, differentiating both sides with respect to r, we get
`r^2xx(d^2v)/(d^2r)+2rxx(dv)/(dr)=0`
`⇒r(d^2v)/(d^2r)+2(dv)/(dr)=0`
This is the differential equation representing the family of the given curves
APPEARS IN
RELATED QUESTIONS
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
`x/a + y/b = 1`
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = a e3x + b e– 2x
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Solve the differential equation `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`
Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)
The general solution of a differential equation of the type `dx/dy + P_1 x = Q_1` is ______.
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
Verify that xy = a ex + b e−x + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]
\[\frac{dy}{dx} + 4x = e^x\]
\[\frac{dy}{dx} = x^2 e^x\]
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]
tan y dx + tan x dy = 0
(1 + x) y dx + (1 + y) x dy = 0
x cos2 y dx = y cos2 x dy
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
Solve the differential equation:
cosec3 x dy − cosec y dx = 0
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
The general solution of the differential equation `(ydx - xdy)/y` = 0
The general solution of the differential equation `x^xdy + (ye^x + 2x) dx` = 0
The general solution of the differential equation y dx – x dy = 0 is ______.