English

Solve the differential equation: cosec3 x dy − cosec y dx = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the differential equation:

cosec3 x dy − cosec y dx = 0

Sum

Solution

Given, differential equation is

cosec3 x dy − cosec y dx = 0

⇒ cosec3 x dy = cosec y dx

⇒ `int "dy"/("cosec y") = int "dx"/("cosec"^3 "x")`

⇒ `int sin "y dy" = int sin^3 "x dx"`

⇒ `- cos "y" = int sin^2 "x". sin "x dx"`

= `int (1 - cos^2 "x"). sin "x dx"`

Let cos x = t,

⇒ − sin x dx = dt

∴ − cos y = `- int (1 - "t"^2) "dt"`

⇒ cos y = `"t" - "t"^3/3 + "c"`

∴ cos y = `cos "x" - (cos^3 "x")/3 + "c"`

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Set 1

RELATED QUESTIONS

Write the integrating factor of the following differential equation:

(1+y2) dx(tan1 yx) dy=0


Find the differential equation of the family of lines passing through the origin.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} = y^2 + 2y + 2\]


\[\frac{dy}{dx} + 4x = e^x\]


x cos2 y dx = y cos2 x dy


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


General solution of tan 5θ = cot 2θ is


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


Solve the differential equation: y dx + (x – y2)dy = 0


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×