English

D Y D X + 4 X = E X - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} + 4x = e^x\]

Sum

Solution

We have,

\[\frac{dy}{dx} + 4x = e^x \]

\[ \Rightarrow \frac{dy}{dx} = e^x - 4x\]

\[ \Rightarrow dy = \left( e^x - 4x \right)dx\]

Integrating both sides, we get

\[\int dy = \int\left( e^x - 4x \right)dx\]

\[ \Rightarrow y = e^x - 2 x^2 + C\]

\[ \Rightarrow y + 2 x^2 = e^x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 145]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 21 | Page 145

RELATED QUESTIONS

Write the integrating factor of the following differential equation:

(1+y2) dx(tan1 yx) dy=0


Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.


\[\frac{dy}{dx} = x^2 e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]


cosec x (log y) dy + x2y dx = 0


(1 − x2) dy + xy dx = xy2 dx


Solve the differential equation:

cosec3 x dy − cosec y dx = 0


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


General solution of tan 5θ = cot 2θ is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


The general solution of the differential equation y dx – x dy = 0 is ______.


Solve the differential equation: y dx + (x – y2)dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×