English

Verify that Y = a Cos X + Sin X Satisfies the Differential Equation Cos X D Y D X + ( Sin X ) Y = 1. - Mathematics

Advertisements
Advertisements

Question

Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]

Sum

Solution

We have,

\[\cos x\frac{dy}{dx} + \left( \sin x \right)y = 1 . . . . . \left( 1 \right)\]

Now,

y = A cos x + sin x

\[\frac{dy}{dx} = - A \sin x + \cos x\]

\[\text{Putting }\frac{dy}{dx} = - A \sin x + \cos x\text{ and }y = A \cos x + \sin x\text{ in (1), we get}\]

\[\text{LHS }= \left( \cos x \right)\left( - A \sin x + \cos x \right) + \left( \sin x \right) \left( A \cos x + \sin x \right)\]

\[ = - A \sin x \cos x + \cos^2 x + A \cos x \sin x + \sin^2 x\]

\[ = \cos^2 x + \sin^2 x\]

\[ = 1\]

= RHS

Thus, y = A cos x + sin x is the solution of the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 145]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 14 | Page 145

RELATED QUESTIONS

Write the integrating factor of the following differential equation:

(1+y2) dx(tan1 yx) dy=0


Find the differential equation of the family of lines passing through the origin.


Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]


Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.


Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} = x^2 e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


tan y dx + tan x dy = 0


x cos2 y dx = y cos2 x dy


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


(1 − x2) dy + xy dx = xy2 dx


Solve the differential equation:

cosec3 x dy − cosec y dx = 0


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


General solution of tan 5θ = cot 2θ is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


The number of arbitrary constant in the general solution of a differential equation of fourth order are


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation `(ydx - xdy)/y` = 0


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


The general solution of the differential equation y dx – x dy = 0 is ______.


Solve the differential equation: y dx + (x – y2)dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×