English

From X2 + Y2 + 2ax + 2by + C = 0, Derive a Differential Equation Not Containing A, B and C. - Mathematics

Advertisements
Advertisements

Question

From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.

Sum

Solution

We have,

x2 + y2 + 2ax + 2by + c = 0         .....(i)

Differentiating (i) with respect to x, we get

\[2x + 2yy' + 2a + 2by' = 0\]
Again differentiating with respect to `x`, we get
\[2 + 2 \left( y' \right)^2 + 2yy'' + 2by'' = 0\]
\[1 + \left( y' \right)^2 + yy'' + by'' = 0\]
\[b = \frac{- \left( 1 + \left( y' \right)^2 + yy" \right)}{y ''}\]
We have,
\[1 + \left( y' \right)^2 + yy'' + by'' = 0\]
Again differentiating with respect to `x`, we get
\[2y'y'' + y'y '' + yy''' + by''' = 0\]
On substituting the value of `b` we get,
\[3y'y'' + yy''' + \left( \frac{- \left( 1 + \left( y' \right)^2 + yy " \right)}{y''} \right)y''' = 0\]
\[3y' \left( y'' \right)^2 + yy '' y''' - y''' - \left( y' \right)^2 y''' - yy'''y " = 0\]
\[3y' \left( y " \right)^2 = y'''\left( 1 + \left( y' \right)^2 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 145]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 17 | Page 145

RELATED QUESTIONS

Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


x cos2 y dx = y cos2 x dy


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


(1 − x2) dy + xy dx = xy2 dx


Solve the differential equation:

cosec3 x dy − cosec y dx = 0


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation y dx – x dy = 0 is ______.


Solve the differential equation: y dx + (x – y2)dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×