Advertisements
Advertisements
प्रश्न
Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]
उत्तर
The equation of the family of parabolas axis parallel to y-axis is given by
\[\left( x - \beta \right)^2 = 4a\left( y - \alpha \right)............(1)\]
Here,
\[\alpha\text{ and }\beta\] are two arbitrary constants.
Differentiating (1) with respect to x, we get
\[2\left( x - \beta \right) = 4a\frac{dy}{dx}\]
\[ \Rightarrow 1 = 2a\frac{d^2 y}{d x^2}\]
\[ \Rightarrow 0 = 2a\frac{d^3 y}{d x^3}\]
\[ \Rightarrow \frac{d^3 y}{d x^3} = 0\]
APPEARS IN
संबंधित प्रश्न
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.
Solve the differential equation `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`
Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)
The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.
The general solution of a differential equation of the type `dx/dy + P_1 x = Q_1` is ______.
Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.
The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is
Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]
Find the differential equation corresponding to y = ae2x + be−3x + cex where a, b, c are arbitrary constants.
From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.
\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]
\[\frac{dy}{dx} + 4x = e^x\]
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]
tan y dx + tan x dy = 0
(1 + x) y dx + (1 + y) x dy = 0
x cos2 y dx = y cos2 x dy
cosec x (log y) dy + x2y dx = 0
(1 − x2) dy + xy dx = xy2 dx
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.
Solve the differential equation:
cosec3 x dy − cosec y dx = 0
The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is
Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
The general solution of the differential equation `(ydx - xdy)/y` = 0
The general solution of the differential equation `x^xdy + (ye^x + 2x) dx` = 0
Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`
What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2) (-2 < y < 2)`
Solve the differential equation: y dx + (x – y2)dy = 0