मराठी

Show that the Differential Equation of All Parabolas Which Have Their Axes Parallel to Y-axis is D 3 Y D X 3 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]

बेरीज

उत्तर

The equation of the family of parabolas axis parallel to y-axis is given by

\[\left( x - \beta \right)^2 = 4a\left( y - \alpha \right)............(1)\]

Here,

\[\alpha\text{ and }\beta\] are two arbitrary constants.

Differentiating (1) with respect to x, we get

\[2\left( x - \beta \right) = 4a\frac{dy}{dx}\]

\[ \Rightarrow 1 = 2a\frac{d^2 y}{d x^2}\]

\[ \Rightarrow 0 = 2a\frac{d^3 y}{d x^3}\]

\[ \Rightarrow \frac{d^3 y}{d x^3} = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 16 | पृष्ठ १४५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write the integrating factor of the following differential equation:

(1+y2) dx(tan1 yx) dy=0


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]


Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]


tan y dx + tan x dy = 0


(1 + xy dx + (1 + yx dy = 0


x cos2 y dx = y cos2 x dy


cosec x (log y) dy + x2y dx = 0


(1 − x2) dy + xy dx = xy2 dx


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


Solve the differential equation:

cosec3 x dy − cosec y dx = 0


The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation `(ydx - xdy)/y` = 0


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


Solve the differential equation: y dx + (x – y2)dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×