Advertisements
Advertisements
प्रश्न
tan y dx + tan x dy = 0
उत्तर
We have,
tan y dx + tan x dy = 0
\[\Rightarrow \tan x\frac{dy}{dx} = - \tan y \]
\[ \Rightarrow \cot y dy = - \cot x dx\]
Integrating both sides, we get
\[\int\cot y dy = - \int\cot x dx\]
\[ \Rightarrow \log \left| \sin y \right| = - \log \left| \sin x \right| + \log C\]
\[ \Rightarrow \log \left| \sin y \right| + \log \left| \sin x \right| = \log C\]
\[ \Rightarrow \log \left| \left( \sin y \right)\left( \sin x \right) \right| = \log C\]
\[ \Rightarrow \left( \sin y \right)\left( \sin x \right) = C\]
\[ \Rightarrow \sin x \sin y = C\]
APPEARS IN
संबंधित प्रश्न
Find the differential equation of the family of lines passing through the origin.
Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.
The general solution of a differential equation of the type `dx/dy + P_1 x = Q_1` is ______.
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.
Verify that xy = a ex + b e−x + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
Find the differential equation corresponding to y = ae2x + be−3x + cex where a, b, c are arbitrary constants.
Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]
\[\frac{dy}{dx} + 4x = e^x\]
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]
(1 + x) y dx + (1 + y) x dy = 0
x cos2 y dx = y cos2 x dy
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
(1 − x2) dy + xy dx = xy2 dx
Solve the differential equation:
cosec3 x dy − cosec y dx = 0
The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is
If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is
The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is
The general solution of the differential equation `x^xdy + (ye^x + 2x) dx` = 0
What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2) (-2 < y < 2)`
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)