Advertisements
Advertisements
प्रश्न
The general solution of the differential equation y dx – x dy = 0 is ______.
पर्याय
xy = C
x = Cy2
y = Cx
y = Cx2
उत्तर
The general solution of the differential equation y dx – x dy = 0 is y = Cx.
Explanation:
y dx – x dy = 0
⇒ y dx – x dy = 0
⇒ `(dy)/y = (dx)/x`
⇒ `int (dy)/y = int (dx)/x + logK, K > 0`
⇒ log |y| = log |x| + log K
⇒ log |y| = log |x| K
⇒ |y| = |x| K
⇒ y = ± Kx
⇒ y = Cx
APPEARS IN
संबंधित प्रश्न
Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
Find the differential equation corresponding to y = ae2x + be−3x + cex where a, b, c are arbitrary constants.
From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.
\[\frac{dy}{dx} = y^2 + 2y + 2\]
\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]
tan y dx + tan x dy = 0
(1 + x) y dx + (1 + y) x dy = 0
x cos2 y dx = y cos2 x dy
cosec x (log y) dy + x2y dx = 0
A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.
Solve the differential equation:
cosec3 x dy − cosec y dx = 0
General solution of tan 5θ = cot 2θ is
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
The general solution of the differential equation `(ydx - xdy)/y` = 0
Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)