हिंदी

The Solution of the Differential Equation 2 X D Y D X − Y = 3 Represents - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents

विकल्प

  • circles

  • straight lines

  • ellipses

  • parabolas

MCQ

उत्तर

parabolas

 

We have,

\[2x\frac{dy}{dx} - y = 3\]

\[ \Rightarrow 2x\frac{dy}{dx} = 3 + y\]

\[ \Rightarrow \frac{1}{3 + y}dy = \frac{1}{2x}dx\]

Integrating both sides, we get

\[\int\frac{1}{3 + y}dy = \frac{1}{2}\int\frac{1}{x}dx\]

\[ \Rightarrow \log \left| 3 + y \right| = \frac{1}{2}\log \left| x \right| + \log C\]

\[ \Rightarrow \log \left| 3 + y \right| - \log \left| x^\frac{1}{2} \right| = \log C\]

\[ \Rightarrow \log \left| \frac{3 + y}{\sqrt{x}} \right| = \log C\]

\[ \Rightarrow \frac{3 + y}{\sqrt{x}} = C\]

\[ \Rightarrow 3 + y = C\sqrt{x}\]

Squaring both sides, we get

\[ \left( 3 + y \right)^2 = Cx . . . . . \left( 1 \right)\]

\[\text{ Thus, }\left( 1 \right)\text{ represents the equation of parabolas .}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - MCQ [पृष्ठ १४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
MCQ | Q 20 | पृष्ठ १४१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


(x + y − 1) dy = (x + y) dx


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The solution of differential equation coty dx = xdy is ______.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×