मराठी

The Solution of the Differential Equation 2 X D Y D X − Y = 3 Represents - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents

पर्याय

  • circles

  • straight lines

  • ellipses

  • parabolas

MCQ

उत्तर

parabolas

 

We have,

\[2x\frac{dy}{dx} - y = 3\]

\[ \Rightarrow 2x\frac{dy}{dx} = 3 + y\]

\[ \Rightarrow \frac{1}{3 + y}dy = \frac{1}{2x}dx\]

Integrating both sides, we get

\[\int\frac{1}{3 + y}dy = \frac{1}{2}\int\frac{1}{x}dx\]

\[ \Rightarrow \log \left| 3 + y \right| = \frac{1}{2}\log \left| x \right| + \log C\]

\[ \Rightarrow \log \left| 3 + y \right| - \log \left| x^\frac{1}{2} \right| = \log C\]

\[ \Rightarrow \log \left| \frac{3 + y}{\sqrt{x}} \right| = \log C\]

\[ \Rightarrow \frac{3 + y}{\sqrt{x}} = C\]

\[ \Rightarrow 3 + y = C\sqrt{x}\]

Squaring both sides, we get

\[ \left( 3 + y \right)^2 = Cx . . . . . \left( 1 \right)\]

\[\text{ Thus, }\left( 1 \right)\text{ represents the equation of parabolas .}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - MCQ [पृष्ठ १४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
MCQ | Q 20 | पृष्ठ १४१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the differential equation representing the curve y = cx + c2.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


If y = etan x+ (log x)tan x then find dy/dx


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


Which of the following differential equations has y = x as one of its particular solution?


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} + 1 = e^{x + y}\]


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


(x + y − 1) dy = (x + y) dx


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×