मराठी

Solve the Differential Equation : ( X 2 + 3 Xy + Y 2 ) D X − X 2 D Y = 0 Given that Y = 0 When X = 1 . - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.

बेरीज

उत्तर

Here `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2d"y" = 0`


⇒ `(d"y")/(d"x") = ("x"^2 + 3"xy"+"y"^2)/("x"^2)`


⇒ `(d"y")/(d"x") = 1 + 3("y")/("x") + ("y"^2)/("x"^2)`


Put y = vx


⇒ `(d"y")/(d"x") = "v" + "x"(d"v")/(d"x")`


∴ `"v" + "x"(d"v")/(d"x") = 1 + 3"v"+"v"^2`


⇒ `"x"(d"v")/(d"x") = 1 + 2"v"+"v"^2`


⇒ `int_  (d"v")/(("v"+1)^2) = int_  (d"x")/("x")`


⇒ `-(1)/(("v"+1)) = log|"x"| + "C"`


⇒ `-("x")/("y"+"x") = log|"x"|+"C"`


As 1 y = 0 when x = 1 so, `-(1)/(0+1) = log|1|+"C"`

⇒ `"C" = -1`.

Hence the required solution is, `-("x")/("y"+"x")   = log|"x"|-1`

⇒ `-"x" = "y" log|"x"| +"x" log |"x"| -"y" -"x"`

∴ `"y" = log|"x"| ("x" + "y")`

or,

`"y" = ("x" log|"x"|)/(1-log|"x"|)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) All India Set 1 E

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


The number of arbitrary constants in the particular solution of a differential equation of third order is


\[\frac{dy}{dx} = \left( x + y \right)^2\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


x2 dy + (x2 − xy + y2) dx = 0


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


y = aemx+ be–mx satisfies which of the following differential equation?


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×