मराठी

The general solution of the differential equation dydxdydx+yx = 1 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.

रिकाम्या जागा भरा

उत्तर

The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is `x^2/2 + "C"`.

Explanation:

xy = `x^2/2 + "c"`

I.F. = `"e"^(int 1/x "d"x)`

= elogx

= x and the solution is y.

x = `int x * 1  "d"x = x^2/2 + "C"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Solved Examples [पृष्ठ १९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Solved Examples | Q 22. (viii) | पृष्ठ १९०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


(x + y − 1) dy = (x + y) dx


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×