मराठी

( 1 + Y 2 ) + ( X − E − Tan − 1 Y ) D Y D X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]

बेरीज

उत्तर

We have,

\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]

\[\Rightarrow \frac{dx}{dy} = \frac{e^{- \tan^{- 1} y} - x}{1 + y^2}\]

\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{e^{- \tan^{- 1} y}}{1 + y^2}\]

\[\text{Comparing with }\frac{dx}{dy} + Px = Q,\text{ we get}\]

\[P = \frac{1}{1 + y^2} \]

\[Q = \frac{e^{- \tan^{- 1} y}}{1 + y^2}\]

\[Now, \]

\[I . F . = e^{\int\frac{1}{1 + y^2}dy} = e^{\tan^{- 1} y} \]

So, the solution is given by

\[x \times e^{\tan^{- 1} y} = \int\frac{e^{- \tan^{- 1} y}}{1 + y^2} \times e^{\tan^{- 1} y} dy + C\]

\[ \Rightarrow x \times e^{\tan^{- 1} y} = \int\frac{1}{1 + y^2} dy + C\]

\[ \Rightarrow x e^{\tan^{- 1} y} = \tan^{- 1} y + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 57 | पृष्ठ १४६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


The solution of differential equation coty dx = xdy is ______.


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×