Advertisements
Advertisements
प्रश्न
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
उत्तर
We have,
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
\[\Rightarrow \frac{dx}{dy} = \frac{e^{- \tan^{- 1} y} - x}{1 + y^2}\]
\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{e^{- \tan^{- 1} y}}{1 + y^2}\]
\[\text{Comparing with }\frac{dx}{dy} + Px = Q,\text{ we get}\]
\[P = \frac{1}{1 + y^2} \]
\[Q = \frac{e^{- \tan^{- 1} y}}{1 + y^2}\]
\[Now, \]
\[I . F . = e^{\int\frac{1}{1 + y^2}dy} = e^{\tan^{- 1} y} \]
So, the solution is given by
\[x \times e^{\tan^{- 1} y} = \int\frac{e^{- \tan^{- 1} y}}{1 + y^2} \times e^{\tan^{- 1} y} dy + C\]
\[ \Rightarrow x \times e^{\tan^{- 1} y} = \int\frac{1}{1 + y^2} dy + C\]
\[ \Rightarrow x e^{\tan^{- 1} y} = \tan^{- 1} y + C\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The solution of differential equation coty dx = xdy is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`