मराठी

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation: x + y = tan–1y : y2 y′ + y2 + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0

बेरीज

उत्तर

x + y = tan-1y

1 = y’ = `1/(1 + y^2)` (y’)

⇒ (1 + y') (1 + y2) = y’

⇒ 1 + y2 + y' + y2y' = y'

⇒  1 + y2 + y2y' = 0

Hence, the given function x + y = tan-1y is a solution to the given differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise 9.2 [पृष्ठ ३८५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise 9.2 | Q 9 | पृष्ठ ३८५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


If y = etan x+ (log x)tan x then find dy/dx


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The number of arbitrary constants in the general solution of differential equation of fourth order is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


Which of the following differential equations has `y = x` as one of its particular solution?


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×