Advertisements
Advertisements
प्रश्न
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
उत्तर
y = P eax + Q ebx
Differentiating w.r.t x, we get:
`dy/dx=Pae^(ax)+Qbe^(bx)..................(1)`
`(a+b)dy/dx=(a+b)(Pae^(ax)+Qbe^(bx))`
`(a+b)dy/dx=Pa^2e^(ax)+Qb^2e^(bx)+ab(Pe^(ax)+Qe^(bx))`
`(a+b)dy/dx=Pa^2e^(ax)+Qb^2e^(bx)+aby`
`-[-(a+b)dy/dx+aby]=Pa^2e^(ax)+Qb^2e^(bx)........(2)`
Differentiating (1) w.r.t. x, we get:
`(d^y)/(dx^2)=Pa^2e^(ax)+Qb^2e^(bx)................(3)`
Subtracting (2) from (3), we get:
`(d^y)/(dx^2)-(a+b)dy/dx+aby=Pa^2e^(ax)+Qb^2e^(bx)-Pa^2e^(ax)-Qb^2e^(bx)`
`(d^y)/(dx^2)-(a+b)dy/dx+aby=0`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
If y = etan x+ (log x)tan x then find dy/dx
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
Which of the following differential equations has y = x as one of its particular solution?
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
(x2 + 1) dy + (2y − 1) dx = 0
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\frac{dy}{dx} + y = 4x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`