मराठी

Y − X D Y D X = B ( 1 + X 2 D Y D X ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]

बेरीज

उत्तर

We have,

\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]

\[ \Rightarrow y - b = \left( b x^2 + x \right)\frac{dy}{dx}\]

\[ \Rightarrow \left( \frac{1}{y - b} \right)dy = \left( \frac{1}{b x^2 + x} \right)dx\]

Integrating both sides, we get

\[\int\left( \frac{1}{y - b} \right)dy = \int\left( \frac{1}{b x^2 + x} \right)dx\]

\[ \Rightarrow \int\left( \frac{1}{y - b} \right)dy = \frac{1}{b}\int\left( \frac{1}{x^2 + \frac{1}{b}x} \right)dx\]

\[ \Rightarrow \int\left( \frac{1}{y - b} \right)dy = \frac{1}{b}\int\left( \frac{1}{x^2 + \frac{1}{b}x + \frac{1}{4 b^2} - \frac{1}{4 b^2}} \right)dx\]

\[ \Rightarrow \int\left( \frac{1}{y - b} \right)dy = \frac{1}{b}\int\frac{1}{\left( x + \frac{1}{2b} \right)^2 - \left( \frac{1}{2b} \right)^2}dx\]

\[ \Rightarrow \log \left| y - b \right| = \frac{1}{2 \times \frac{1}{2b}b}\log \left| \frac{x + \frac{1}{2b} - \frac{1}{2b}}{x + \frac{1}{2b} + \frac{1}{2b}} \right| + \log C\]

\[ \Rightarrow \log \left| y - b \right| = \log \left| \frac{bx}{bx + 1} \right| + \log C\]

\[ \Rightarrow y - b = \frac{Cbx}{bx + 1}\]

\[ \Rightarrow Cbx = \left( y - b \right)\left( bx + 1 \right)\]

\[ \Rightarrow x = k\left( y - b \right)\left( bx + 1 \right),\text{ where }k = \frac{1}{bC}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 50 | पृष्ठ १४६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\frac{dy}{dx} + y = 4x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Solution of differential equation xdy – ydx = 0 represents : ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×