Advertisements
Advertisements
प्रश्न
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
उत्तर
We have,
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[ \Rightarrow y - b = \left( b x^2 + x \right)\frac{dy}{dx}\]
\[ \Rightarrow \left( \frac{1}{y - b} \right)dy = \left( \frac{1}{b x^2 + x} \right)dx\]
Integrating both sides, we get
\[\int\left( \frac{1}{y - b} \right)dy = \int\left( \frac{1}{b x^2 + x} \right)dx\]
\[ \Rightarrow \int\left( \frac{1}{y - b} \right)dy = \frac{1}{b}\int\left( \frac{1}{x^2 + \frac{1}{b}x} \right)dx\]
\[ \Rightarrow \int\left( \frac{1}{y - b} \right)dy = \frac{1}{b}\int\left( \frac{1}{x^2 + \frac{1}{b}x + \frac{1}{4 b^2} - \frac{1}{4 b^2}} \right)dx\]
\[ \Rightarrow \int\left( \frac{1}{y - b} \right)dy = \frac{1}{b}\int\frac{1}{\left( x + \frac{1}{2b} \right)^2 - \left( \frac{1}{2b} \right)^2}dx\]
\[ \Rightarrow \log \left| y - b \right| = \frac{1}{2 \times \frac{1}{2b}b}\log \left| \frac{x + \frac{1}{2b} - \frac{1}{2b}}{x + \frac{1}{2b} + \frac{1}{2b}} \right| + \log C\]
\[ \Rightarrow \log \left| y - b \right| = \log \left| \frac{bx}{bx + 1} \right| + \log C\]
\[ \Rightarrow y - b = \frac{Cbx}{bx + 1}\]
\[ \Rightarrow Cbx = \left( y - b \right)\left( bx + 1 \right)\]
\[ \Rightarrow x = k\left( y - b \right)\left( bx + 1 \right),\text{ where }k = \frac{1}{bC}\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\frac{dy}{dx} + y = 4x\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Solution of differential equation xdy – ydx = 0 represents : ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.