मराठी

The general solution of the differential equation dydxdydx+ysecx = tan x is y(secx – tanx) = secx – tanx + x + k. - Mathematics

Advertisements
Advertisements

प्रश्न

The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is False.

Explanation:

Since I.F. = `"e"^(int sec x"d"x)`

= `"e"^(log(secx + tanx)`

= secx + tanx

The solution is, y(secx + tanx) = `int (secx + tanx)tan x"d"x`

= `int(secx tanx + sec^2x - 1)"d"x`

= secx + tanx – x + k

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Solved Examples [पृष्ठ १९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Solved Examples | Q 23. (viii) | पृष्ठ १९१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


\[\frac{dy}{dx} = \left( x + y \right)^2\]


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


Solution of differential equation xdy – ydx = 0 represents : ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×