Advertisements
Advertisements
प्रश्न
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
उत्तर
`dy/dx + sqrt((1 - y^2)/(1 - x^2)) = 0`
`=> dy/dx = - sqrt((1 - y^2)/(1 - x^2))`
`dy/sqrt(1 - y^2) + dx/sqrt(1 - x^2) = 0`
On integrating
sin-1 y + sin-1 x = C
which is the required solution.
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
If y = etan x+ (log x)tan x then find dy/dx
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
cos (x + y) dy = dx
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} - y \tan x = e^x\]
(x3 − 2y3) dx + 3x2 y dy = 0
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\frac{dy}{dx} + y = 4x\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.