मराठी

Find a Particular Solution of the Following Differential Equation:- (X + Y) Dy + (X − Y) Dx = 0; Y = 1 When X = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1

बेरीज

उत्तर

We have,

\[\left( x + y \right)dy + \left( x - y \right)dx = 0\]

\[\frac{dy}{dx} = \frac{y - x}{x + y}\]

Let y = vx

\[\frac{dy}{dx} = v + x\frac{dv}{dx}\]

\[ \therefore v + x\frac{dv}{dx} = \frac{vx - x}{x + vx}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 1}{1 + v} - v\]

\[ \Rightarrow \frac{x dv}{dx} = \frac{v - 1 - v - v^2}{1 + v}\]

\[ \Rightarrow x\frac{dv}{dx} = - \left( \frac{v^2 + 1}{1 + v} \right)\]

\[ \Rightarrow \frac{1 + v}{v^2 + 1}dv = - \frac{1}{x}dx\]

Integrating both sides, we get

\[\int\frac{1 + v}{1 + v^2}dy = - \int\frac{1}{x}dx\]

\[\int\frac{1}{1^2 + v^2}dy + \frac{1}{2}\int\frac{2v}{1 + v^2} = - \int\frac{1}{x}dx\]

\[ \Rightarrow \tan^{- 1} v + \frac{1}{2}\log\left( 1 + v^2 \right) = - \log \left| x \right| + C\]

\[ \Rightarrow 2 \tan^{- 1} v + \log\left( 1 + v^2 \right) + 2\log \left| x \right| = 2C\]

\[ \Rightarrow 2 \tan^{- 1} v + \log\left( 1 + v^2 \right) x^2 = k\text{ where, }k = 2C\]

\[ \Rightarrow 2 \tan^{- 1} \frac{y}{x} + \log\left( 1 + \frac{y^2}{x^2} \right) x^2 = k\]

\[ \Rightarrow 2 \tan^{- 1} \frac{y}{x} + \log \left( x^2 + y^2 \right) = k . . . . . . . . . \left( 1 \right)\]

Now,

When x = 1, y = 1

\[ \therefore 2 \tan^{- 1} 1 + \log \left( 2 \right) = k\]

\[ \Rightarrow k = \frac{\pi}{2} + \log 2\]

Putting the value of `k` in (1), we get

\[2 \tan^{- 1} \frac{y}{x} + \log \left( x^2 + y^2 \right) = \frac{\pi}{2} + \log 2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 67.2 | पृष्ठ १४७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The solution of differential equation coty dx = xdy is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×