Advertisements
Advertisements
प्रश्न
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
उत्तर
We have,
\[\left( x + y \right)dy + \left( x - y \right)dx = 0\]
\[\frac{dy}{dx} = \frac{y - x}{x + y}\]
Let y = vx
\[\frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[ \therefore v + x\frac{dv}{dx} = \frac{vx - x}{x + vx}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 1}{1 + v} - v\]
\[ \Rightarrow \frac{x dv}{dx} = \frac{v - 1 - v - v^2}{1 + v}\]
\[ \Rightarrow x\frac{dv}{dx} = - \left( \frac{v^2 + 1}{1 + v} \right)\]
\[ \Rightarrow \frac{1 + v}{v^2 + 1}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1 + v}{1 + v^2}dy = - \int\frac{1}{x}dx\]
\[\int\frac{1}{1^2 + v^2}dy + \frac{1}{2}\int\frac{2v}{1 + v^2} = - \int\frac{1}{x}dx\]
\[ \Rightarrow \tan^{- 1} v + \frac{1}{2}\log\left( 1 + v^2 \right) = - \log \left| x \right| + C\]
\[ \Rightarrow 2 \tan^{- 1} v + \log\left( 1 + v^2 \right) + 2\log \left| x \right| = 2C\]
\[ \Rightarrow 2 \tan^{- 1} v + \log\left( 1 + v^2 \right) x^2 = k\text{ where, }k = 2C\]
\[ \Rightarrow 2 \tan^{- 1} \frac{y}{x} + \log\left( 1 + \frac{y^2}{x^2} \right) x^2 = k\]
\[ \Rightarrow 2 \tan^{- 1} \frac{y}{x} + \log \left( x^2 + y^2 \right) = k . . . . . . . . . \left( 1 \right)\]
Now,
When x = 1, y = 1
\[ \therefore 2 \tan^{- 1} 1 + \log \left( 2 \right) = k\]
\[ \Rightarrow k = \frac{\pi}{2} + \log 2\]
Putting the value of `k` in (1), we get
\[2 \tan^{- 1} \frac{y}{x} + \log \left( x^2 + y^2 \right) = \frac{\pi}{2} + \log 2\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
(1 + y + x2 y) dx + (x + x3) dy = 0
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The solution of differential equation coty dx = xdy is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.