Advertisements
Advertisements
प्रश्न
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
उत्तर
The given differential equation is `y + "d"/("d"x) (xy) = x(sinx + logx)`
⇒ `y + x * ("d"y)/("d"x) + y = x(sinx + logx)`
⇒ `x ("d"y)/("d"x) = x(sinx + logx) - 2y`
⇒ `("d"y)/("d"x) = (sinx + logx) - (2y)/x`
⇒ `("d"y)/("d"x) + 2x y = (sinx + logx)`
Here, P = `2/x` and Q = `(sinx + log x)`
Integrating factor I.F. = `"e"^(intPdx)`
= `"e"^(int 2/x dx)`
= `"e"^(2logx)`
= `"e"^(log x^2)`
= x2
∴ Solution is `y xx "I"."F". = int "Q"."I"."F". "d"x + "c"`
⇒ `y . x^2 = int (sinx + logx)x^2 "d"x + "c"` ....(1)
Let I = `int (sinx + logx)x^2 "d"x`
= `int_"I"x^2 sinx "d"x + int_"iII"^(x^2) log x "d"x`
= `[x^2 . int sinx "d"x - int("D"(x^2) . int sinx "d"x)"d"x] + [logx . intsinx "d"x - int ("D"(logx) . intx^2 "d"x)"d"x]`
= `[x^2(-cosx) -2 int - x cosx "d"x] + [logx . x^3/3 - int 1/x * x^3/3 "d"x]`
= `[-x^2 cosx + 2(xsinx - int1 .sinx "d"x)] + [x^3/3 log x - 1/3 int x^2 "d"x]`
= `-x^2cosx + 2x sinx + 2cosx + x^3/3 log x - 1/9 x^3`
Now from equation (1) we get,
`y . x^2 = -x^2 cosx + 2x sinx + 2cosx + x^3/3 log x - 1/9 x^3 + "c"`
∴ y = `-cosx + (2sinx)/x + (2cosx)/x^2 + (xlogx)/3 - 1/9 x + "c" .x^-2`
Hence, the required solution is `-cosx + (2sinx)/x + (2cosx)/x^2 + (xlogx)/3 - 1/9 x + "c" .x^-2`
APPEARS IN
संबंधित प्रश्न
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
The number of arbitrary constants in the general solution of differential equation of fourth order is
The number of arbitrary constants in the particular solution of a differential equation of third order is
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`