Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
उत्तर
Given equation can be written as
`x/(1+x^2)dx-y/(1+y^2)dy=0`
Integrating to get
`1/2 log (1+x^2)-1/2log(1+y^2)=logc_1`
`=>log(1+x^2)-log(1+y^2)=logc_1^2=logc`
`therefore (1+x^2)/(1+y^2)=c`
`x=0,y=1=>c=1/2`
`therefore 1+y^2=2(1+x^2) or y=sqrt(2x^2+1)`
APPEARS IN
संबंधित प्रश्न
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`