मराठी

The number of solutions of dddydx=y+1x-1 when y (1) = 2 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 

पर्याय

  • None

  • One

  • Two

  • Infinite

MCQ
रिकाम्या जागा भरा

उत्तर

The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is one

Explanation:

The given differential equation is `("d"y)/("d"x) = (y + 1)/(x - 1)`

⇒ `("d"y)/(y + 1) = ("d"x)/(x - 1)`

Integrating both sides, we get

`int ("d"y)/(y + 1) = int ("d"x)/(x - 1)`

⇒ log(y + 1) = log(x – 1) + log c

⇒ log(y + 1) – log(x – 1) = log c

⇒ `log|(y + 1)/(x - 1)|` = log c

⇒ `(y + 1)/(x - 1)` = c

Put x = 1 and y = 2

⇒ `(2 + 1)/(1 - 1)` = c

∴ c = `oo`

∴ `(y +1)/(x - 1) = 1/0`

⇒ x – 1 = 0

⇒ x = 1.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 45 | पृष्ठ १९७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The number of arbitrary constants in the general solution of differential equation of fourth order is


Which of the following differential equations has y = x as one of its particular solution?


cos (x + y) dy = dx


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Find the differential equation of all non-horizontal lines in a plane.


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×