Advertisements
Advertisements
प्रश्न
General solution of `("d"y)/("d"x) + y` = sinx is ______.
उत्तर
General solution of `("d"y)/("d"x) + y` = sinx is y = `((sinx - cosx)/2) + "c"."e"^-x`.
Explanation:
The given differential equation is `("d"y)/("d"x) + y` = sinx
Since, it it a linear differential equation
∴ P = 1 and Q = sinx
Integrating factor I.F. = `"e"^(intPdx)`
= `"e"^(int1."d"x)`
= ex
∴ Solution is `y xx "i"."F". = int "Q" xx "I"."F". "D"x + "C"`
⇒ `y . "e"^x = int sin x . "e"6x "d"x + "c"` ....(1)
Let I = `int sin_"I"x . "e"_"II"^x "d"x`
I = `sin x . int "e"^x "d"x - int ("D"(sinx) . int"e"^x "d"x)"d"x`
I = `sinx . "e"^x - int cos_"I"x . "e"_"II"^x "d"x`
I = `sinx . "e"^x - [cosx . int "e"^x "d"x - int ("D"(cosx) int"e"^x "d"x)"d"x]`
I = `sin x . "e"6x - [cosx . "e"^x - int - sin x . "e"^x "d"x]`
I = `sin x . "e"^x - cos x . "e"^x - int sin x . "e"^x "d"x`
I = `sin x . "e"^x - cos x . "e"^x - "I"`
⇒ I + I = `"e"^x (sin x - cos x)`
⇒ 2I = `"e"^x (sinx - cosx)`
∴ I = `"e"^x/2 (sinx - cosx)`
From equation (1) we get
`y . "e"^x = "e"^x/2 (sinx - cosx) + "c"`
y = `((sinx - cosx)/2) + "c" . "e"^-x`
APPEARS IN
संबंधित प्रश्न
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the differential equation representing the curve y = cx + c2.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`