मराठी

General solution of dddydx+y = sinx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

General solution of `("d"y)/("d"x) + y` = sinx is ______.

रिकाम्या जागा भरा

उत्तर

General solution of `("d"y)/("d"x) + y` = sinx is y = `((sinx - cosx)/2) + "c"."e"^-x`.

Explanation:

The given differential equation is `("d"y)/("d"x) + y`  = sinx

Since, it it a linear differential equation

∴ P = 1 and Q = sinx

Integrating factor I.F. = `"e"^(intPdx)`

= `"e"^(int1."d"x)`

= ex

∴ Solution is `y xx "i"."F". = int "Q" xx "I"."F". "D"x + "C"`

⇒ `y . "e"^x = int sin x . "e"6x "d"x + "c"`  ....(1)

Let I = `int sin_"I"x . "e"_"II"^x "d"x`

I = `sin x . int "e"^x  "d"x - int ("D"(sinx) . int"e"^x "d"x)"d"x`

I = `sinx . "e"^x - int cos_"I"x . "e"_"II"^x  "d"x`

I = `sinx . "e"^x - [cosx . int "e"^x "d"x - int ("D"(cosx) int"e"^x "d"x)"d"x]`

I = `sin x . "e"6x - [cosx . "e"^x - int - sin x . "e"^x "d"x]`

I = `sin x . "e"^x - cos x . "e"^x - int sin x . "e"^x "d"x`

I = `sin x . "e"^x - cos x . "e"^x - "I"`

⇒ I + I = `"e"^x (sin x - cos x)`

⇒ 2I = `"e"^x (sinx - cosx)`

∴ I = `"e"^x/2 (sinx - cosx)`

From equation (1) we get

`y . "e"^x = "e"^x/2 (sinx - cosx) + "c"`

y = `((sinx - cosx)/2) + "c" . "e"^-x`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ २०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 76.(ix) | पृष्ठ २०२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Find the differential equation representing the curve y = cx + c2.


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×