मराठी

Find the general solution of the following differential equation :  (1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`

उत्तर

Given:

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`

Let tan1y=t

y=tant

`=>dy/dx=sec^2tdt/dx`

Therefore, the equation becomes

(1+tan2t)+(xet)sec2`dt/dx=0`

`=>sec^2t+(x-e^t)(sec^2t)dt/dx=0`

`=>1+(x-e^t)dt/dx=0`

`=>(x-e^t)dt/dx=-1`

`=>x-e^t=dx/dt`

`=>dx/dt+1.x=e^t`

If =e∫1.dt

= et

`:. e^t.(dx/dt+1.x)=e^t.e^t`

 `=>d/dt(xe^t)=e^(2t)`

 Integrating both the sides, we get

`xe^t=inte^(2t)dt`

`=>xe^t=1/2e^(2t)+C " ....(1)"`

Substituting the value of t in (1), we get

`xe^(tan^(1))y=1/2e^(2tan^(-1)y)+C_1`

`=>e^2tan^(-1y)=2xe^(tan^1y)+C`

It is the required general solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


If y = etan x+ (log x)tan x then find dy/dx


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


Which of the following differential equations has y = x as one of its particular solution?


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


cos (x + y) dy = dx


\[\frac{dy}{dx} - y \tan x = e^x\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×